Control of vortex shedding on two- and three-dimensional airfoils

BY TIM COLONIUS1 AND DAVID R. WILLIAMS2

1Department of Mechanical Engineering, California Institute of Technology, Pasadena CA, USA; 2Mechanical and Aerospace Engineering, Illinois Institute of Technology, Chicago IL, USA

We review and expand on the control of separated flows over flat plates and airfoils at low Reynolds numbers associated with micro air vehicles. Experimental observations of the steady-state and transient lift response to actuation, and its dependence on the actuator, airfoil geometry, and flow conditions are discussed and an attempt is made to unify them in terms of their excitation of periodic and transient vortex shedding. We also examine strategies for closed-loop flow and flight control utilizing actuation of leading-edge vortices.

Keywords: Vortex shedding, flow control, micro air vehicles, lift enhancement

1. Introduction

Desirable features of micro air vehicles (MAV) include low cruising speed, gust resistance, agility, and propulsive efficiency. It is as yet unclear that the required aerodynamic forces for such capabilities can be generated and controlled on a fixed-wing MAV. Two critical gaps in answering this question are, firstly, the dearth of experimental data on three-dimensional effects that dominate the flow fields on low aspect ratio airfoils (a notable exception is Torres & Mueller 2004), and, secondly, whether active and/or closed-loop flow control techniques may provide sufficient control authority to replace traditional control surfaces or to quicken the response to flight control directives.

In this paper, we review recent work aimed at understanding the underlying flow physics associated with active flow control applied to low Reynolds number and three-dimensional airfoils at high angle of attack, and we present new experimental data for a low aspect-ratio airfoil with leading-edge actuation mounted on a pitch-plunge mechanism in the unsteady wind tunnel at IIT. We focus in particular on unsteady and transient flows produced by leading-edge actuation, both in the context of continuous and short-duration pulse of actuation. Transient effects, in particular, must be understood in order to develop closed-loop control strategies. Our scope is restricted to fluid-dynamical and control issues and, for brevity we must omit many details. Further information is available in several reviews (Moreau 2007; Pines & Bohorquez 2006; Wu et al. 1991; Greenblatt & Wygnanski 2000; Seifert et al. 2004; Choi et al. 2008).
2. Steady-state natural and actuated flows

(a) Separation and vortex shedding

We first consider flow field and forces associated with a flat plate or airfoil at an angle of attack to an otherwise uniform, steady, stream of speed U, under the action of continuous, but unsteady, forcing from an actuator. The chord length is c, and, unless otherwise mentioned, the planform is rectangular with breadth $2b$ and an aspect ratio $AR = 2b/c$. The relevant Reynolds number is $Re = \frac{Uc}{\nu}$. We first discuss the natural (unforced) flow, and, in the next section, actuated (forced) flows.

As the angle of attack, α, is increased, different regions of separated flow appear as a function of the airfoil shape and Reynolds number. For laminar airfoils, onset of separation would typically occur near the trailing edge, and progress upstream as α is increased. For flat plates and other thin airfoils, the sharp leading edge promotes separation and a separation bubble (with typically turbulent reattachment on the suction surface) may precede the fully-stalled condition. We are concerned here with completely separated (stalled) flow over the entire suction surface, when the airfoil behaves as a bluff body with vortex shedding, oscillatory forces, and the formation of a Kármán vortex street in the wake. The frequency of vortex shedding, at least for the high AR case, follows a Strouhal scaling (Fage & Johansen 1927) with

$$St = \frac{fc\sin \alpha}{U} \approx 0.15 \text{ to } 0.2,$$

where $c\sin \alpha$ is the projected area in the direction of the stream, and the Strouhal number is nearly constant at high Re.

For a strictly 2D flat plate, the onset of vortex shedding occurs, much as it does for a bluff body, as a Hopf bifurcation at critical value of Re or α. Ahuja & Rowley (2010) found $\alpha_{\text{crit}} = 23^\circ$ at $Re = 100$ and Chen et al. (2010) found an $Re_{\text{crit}} = 80$ at a fixed $\alpha = 30^\circ$. For $Re > Re_{\text{crit}}$, the same variation in shedding frequency with Re is observed as that on a circular cylinder (Roshko 1955). Based on the similarity with the flow over a circular cylinder (e.g. Barkley & Henderson 1996), it could be expected that at a higher Re the 2D vortex shedding would undergo a further bifurcation to 3D flow (even for an infinite plate), but these instabilities are only recently beginning to be studied (Rodriguez & Theoﬁlis 2011). For low aspect ratio, 3D flat plates at low Re, vortex shedding still occurs, but data is very limited. Taira & Colonius (2009b) investigated low AR flat plates for $Re = 300$ and 500 over a range of α and for rectangular, elliptical, semi-circular, and delta-shaped planforms. The onset of vortex shedding is delayed to higher Re and α as the aspect ratio is decreased, due to a stabilizing influence of the tip vortices. As AR is increased beyond about 3, the initial bifurcation to vortex shedding coincides with the value for strictly 2D flow.

As in bluff bodies, vortex shedding persists at high α when Re is increased (Williams-Stuber & Gharib 1990). Nominally 2D airfoils, and in particular, the symmetric NACA series, have been studied the most. Huang et al. (2001) measured the frequency of vortex shedding in the wake of a NACA 0012 over a wide range of post-stall values of α up to $Re = O(10^4)$. At sufficiently large Re, the thin shear layer bounding the separation displays a Kelvin-Helmholtz instability (with St about an order of magnitude higher than vortex shedding), and ultimately becomes turbulent (Brendel & Mueller 1988). The dominant shear layer instability frequency shows a power law dependence on Reynolds number, $f \sim Re^n$, similar to circular cylinders Yarusevych et al. (2009). Like the circular cylinder, separated airfoil flows typically

Article submitted to Royal Society
show a broad band of frequencies centered around the nominal shedding value in the
wake, potentially due to the interaction of the differing timescales and the effects
of increasingly complicated and turbulent wakes (Yarusevych et al. 2009). The
situation is more complicated at values of α near the onset of fully separated flow,
where further increases in Re can lead to reattachment of the separated region
prior to the trailing edge. Finally, we note that for flexible, membrane airfoils,
Rojratsirikul et al. (2009) found that the natural vortex shedding at post-stall
angles was coupled to the membrane oscillations.

(b) Actuated flows

Following the pioneering work of Prandtl (1904), classic separation control tech-
niques (Lachmann 1961) such as steady blowing and suction attempts to energize a
boundary layer thereby delaying or preventing separation. Lately, unsteady blowing,
zero-net-mass actuators (synthetic jets), piezoelectric flaps, plasma actuators, and
other unsteady actuators have been shown to achieve similar performance but with
far lower mass, momentum, and/or energy fluxes than steady blowing or suction
(Greenblatt & Wygnanski 2000; Seifert et al. 2004). For airfoils and flaps, lift and
lift-to-drag ratio can be substantially increased, but the underlying mechanisms
associated with lift enhancement or drag reduction are still debated. The domi-
nant idea, discussed in detail by Greenblatt & Wygnanski (2000), is that excitation
of vortical structures in the separated shear layer leads to enhanced entrainment
and the attendant suction of the shear layer to the nearby surface, eliminating or
reducing the extent of the separated region, and leading to a time-averaged flow
field closer to the ideal, potential flow. Entrainment likely plays a role regardless of
whether vortical structures are generated as part of a Kelvin-Helmholtz instability
in the shear layer, or via a global instability of the wake or separation bubble, but,
as discussed in the previous section, the frequencies at which these instabilities oc-
cur are distinct. Especially for low frequencies and high angles of attack, though, lift
enhancement has also been explained in terms of vortex lift (e.g. Wu et al. (1998)),
through concentration of vortical structures closer to the surface of the plate.

For a specified periodic actuator, airfoil geometry, and angle of attack, any
nondimensional performance metric † is at most be a function of the Reynolds num-
ber, the actuator waveform and nondimensional parameters expressing its frequency
and amplitude. For the frequency, the most common choice is a reduced frequency
$f^+ = \frac{f}{f_c}$. For amplitude, the momentum coefficient is often used, $c_\mu = \frac{\rho U_j A_j}{2 \rho U^2 A}$,
where U_j and A_j characterize the mean and/or fluctuating (rms) velocity and area,
respectively, of injection, and A is the planform area. For both these quantities, the
chord length is sometimes replaced by the length of the (natural, unforced) separa-
tion bubble when the flow is not fully separated. Mean and fluctuating values of
c_μ as low as about 10^{-4} can be effective (Greenblatt & Wygnanski 2000).

Greenblatt & Wygnanski (2000) showed that c_μ collapses data obtained with
several different actuators, but, in general, it is difficult to to compare data from
different actuators and waveforms, or with characterizing the actuator performance
in terms of a velocity (or mass flux) that can depend on the plumbing for the

† To be fully general, we should also account for the Mach number, and the possibility that the
density of injected fluid is not equal to the ambient density, resulting two additional parameters.
actuator and whether the performance is measured with or without flow. Most studies observe a lower threshold and upper saturation limit of actuation that define the range of proportional control that can be achieved. In the controls community, this is known as the static map and it is an important step in the design of a control system. Reynolds number effects (e.g. Seifert et al. 2004) have also been studied. Here the most pressing issue is whether some reports of lift enhancement or drag reduction could be explained by the mechanism of tripping the boundary layer to delay or prevent separation. It is clear, however, that there remains an effect of forcing at Re lower than those for which tripping can lead to a turbulent boundary layer, as well as at high Re when the boundary layer was turbulent even in the absence of tripping (Seifert et al. 2004).

The effect of actuation frequency on performance has also been widely studied, and gains (lift enhancement, drag reduction, and other goals) have been realized across a wide range of frequencies. Here we employ the term “low frequency” when the actuation frequency is below and up to the vortex shedding frequency (discussed above), and “high frequency” to refer to everything significantly above it, and in particular to excitation of shear-layer instabilities. As discussed by Raju et al. (2008) (hereafter referred to as RMC), a third distinct timescale exists when the (mean) flow forms a closed recirculation bubble on the airfoil surface. While these three distinct timescales—shear layer, wake (vortex shedding), and (in some cases) separation bubble—can be identified by examining velocity spectra measured at different locations (RMC), the lack of such data makes it difficult to make definitive statements about their values in past experiments. For example, for a turbulent separation, Greenblatt & Wygnanski (2000) report an optimal value of $f^+ = 1$ for a deflected flap (with the flap length as the length scale), where “optimal” refers to that frequency at which a minimal actuation amplitude was required for reattachment (in the mean), and they associate this timescale with shear-layer instabilities. Using the simple scaling for the vortex shedding timescale discussed in the last section, $St = 0.15 = \frac{f_{c} \sin \delta_f}{U}$, where δ_f is the flap deflection angle, we conclude that a typical vortex shedding frequency would have $f^+ > 1$ when $\delta_f > 8^\circ$; one can infer that wake and/or separation bubble instabilities may equally have played a role. Seifert et al. (1996) used oscillatory blowing at the leading edge of a NACA0015 airfoil at Re = 106, and found lift enhancement and drag reduction over range $0 < f^+ < 2$, with a broad maximum around $f^+ = 0.75$, which, for the range of $16^\circ < \alpha < 22^\circ$ considered, gives $0.2 < St < 0.24$.

For lower Reynolds numbers, Hsiao et al. (1994) acoustically forced the flow near the leading edge of a fully separated NACA 633-018 airfoil and observed a strong enhancement of vortex shedding, and the mean lift, but only when excitation was close to the natural vortex shedding frequency. The computational study of RMC showed that for a NACA 4418 at Re = 40,000 and $\alpha = 18^\circ$, actuation with $f^+ > 6$ was increasingly ineffective; in their case, $f^+ = 12$ was identified as the maximally amplified frequency in the separating shear layer. These results are corroborated by the experimental findings of Cierpka et al. (2008) who subjected a NACA 0015 ($\alpha = 20^\circ$) and an inclined flat plate ($\alpha = 13^\circ$) subjected to an electromagnetic actuation near the leading edge. For the plate, with $0.5 < f^+ < 3$, the flow was reattached (the lift enhancement was best at $f^+ = 0.7$ ($St \approx 0.24$), whereas $f^+ > 6$ had little effect on the separation. For their inclined flat plate, they employed a wavelet algorithm to detect large-scale vortices in time-resolved PIV data, which
revealed an interesting coalescence of smaller vortices produced near the actuator into one large coherent vortex advecting down the plate per cycle of actuation, in the case of $f^+ = 1$ ($St = 0.23$), and to two coherent vortices per cycle of actuation when $f^+ = 0.5$, both of which imply vortex shedding at $St = 0.23$. A similar configuration (with a dielectric barrier discharge actuator) was studied by Greenblatt et al. (2008) (flat plate) and Benard et al. (2008) (NACA0015). For the flat plate at $\alpha = 20^\circ$, $0.3 < f^+ < 0.6$ provided the best lift enhancement, whereas $f^+ > 3$ was ineffective, and smoke visualization at $f^+ = 0.4$ showed a strong vortex advecting downstream along the chord: $f^+ = 1.5$ was optimal for a NACA 0015 at $\alpha = 16^\circ$.

Recent studies have also documented the effect of the waveform on performance. It appears that periodic but pulsatile actuation or modulated high frequency sinusoidal oscillation can produce performance equal or greater to sinusoidal actuation at the same frequency (Amitay & Glezer 2002; Woo et al. 2008; Cierpka et al. 2008; Greenblatt et al. 2008; Joe & Colonius 2010b). Indeed, it appears that pulses with as low a duty cycle as 5% can be effective, (Greenblatt et al. 2008). Joe & Colonius (2010b) employed an adjoint-based approach in a low Reynolds number DNS to find the actuator signal (a body force in this case) that gave the highest lift. Indeed, the optimal signal was a nearly periodic pulsatile forcing at a frequency close to that of the vortex shedding.

All of the above studies have focused on 2D geometries. Recently, pulsed jet actuation has been implemented on 3D, low-aspect-ratio airfoils in the Andrew Fejer Unsteady wind tunnel at IIT. Results are presented here for a semi-circular flat-plate (6.9% thickness) airfoil with a rounded leading edge (Williams et al. 2008). The chord is 0.2 m and the model is mounted on a pitch-plunge mechanism, and, for the results discussed in this section, operated here at fixed angle-of-attack and steady freestream speeds of 3 to 9 m/s ($Re = 40,000$ to $120,000$). 16 micro-valve, pulsed-blowing actuators were controlled by a pneumatic transducer supplying a plenum inside the airfoil and positioned radially outward along the leading edge of the airfoil (figure 1).

Figure 2 shows the lift as angle-of-attack is varied, for the natural flow and with actuation consisting of pulses of duration $\Delta t^+ = \frac{U \Delta t}{c} = 0.43$, repeated periodically at $f^+ = 1.16$. The natural flow stalls at $\alpha = 14^\circ$. Smoke wire visualization for the natural and actuated flows at $\alpha = 20^\circ$ (figure 3) shows that the actuation concentrates the leading edge vortex and promotes reattachment near the trailing edge. Experiments with different actuator pressures showed that the lift coefficient scaled well with the coefficient of pressure, $C_{p,j} = \frac{\Delta p_j}{\frac{1}{2} \rho U^2} = 556.0 \left(\frac{U_j}{U} \right)^2$, where the second equality with the actuator jet velocity, U_j, is found by calibrating the actuators using hot-wire measurements of the (maximum) velocity measured near the actuator with the flow off. The lift coefficient increment due to actuation in figure 2 shows a nearly linear increase with U_j/U up to about 1.6, and then saturates. The small deviation from linearity near the origin is repeatable, but its origin is unclear. Similar to the 2D airfoil studies, actuation was effective for lift enhancement over a broad range of low frequencies around the vortex shedding frequency, for which lift spectra at $\alpha = 20^\circ$ for the natural flow showed a peak around $f^+ = 0.66$ ($St = 0.23$).

To summarize, many studies of both 2D and 3D airfoils show that a strong vortex
Figure 1: The semi-circular airfoil with leading edge pulsed-blowing actuators.

Figure 2: At left, lift versus angle of attack with (○) and without (□) actuation at \(U = 5 \text{ m/s} \). At right, mean lift coefficient increment due to pulsed-jet actuation for \(\alpha = 20^\circ \) with \(U = 5 \text{ m/s} \) (○), \(U = 7 \text{ m/s} \) (★), and \(U = 9 \text{ m/s} \) (□). For all cases, \(f^+ = 1.16 \) and \(\frac{U_j}{U} = 2.0 \).

Figure 3: Smoke visualization of the natural (left) and actuated (right) mid-span flow over the semi-circular airfoil at \(\alpha = 20^\circ \). (\(U = 5\text{ m/s} \), \(f^+ = 1.16 \), \(\frac{U_j}{U} = 2.0 \))

The shedding response is excited when the actuation frequency is close to the frequency of natural vortex shedding, and this results in significant enhancement of the lift, typically optimal over the range of frequencies that have been investigated. However, we note that relatively few studies have reported unsteady flow metrics associated with fluctuating forces as function of the actuation frequency. As pointed out by Amitay & Glezer (2002), enhancement of vortex shedding by forcing near its natural
control of vortex shedding on airfoils

frequency also increases the fluctuating lift and drag compared to the baseline. Aside from being potentially detrimental in application, such unsteady effects are essential to understand if closed-loop control approaches are to be successful. This is discussed in greater detail in the next sections.

3. Transients

(a) Leading-edge vortex

When a flat plate at high angle of attack is impulsively started, the separating vortex sheet at the leading and trailing edges roll up into a coherent leading and trailing edge vortices (LEV/TEV). The TEV (start-up vortex) is rapidly shed into the wake, while the LEV continues to grow for about a chord-length of travel, where the lift and drag reach their maximal values (without regard to the additional added mass force during the acceleration). Once the LEV begins to shed, the lift decreases to a minimum that occurs after 4-5 chord-lengths of travel, which appears to be only weakly dependent on the Reynolds number or acceleration rate (Chen et al. 2010). This timescale is consistent with the so-called universal time-scale of vortex formation that is observed in a variety of flows (e.g. Dabiri 2009). Rotational forces on flapping wings, on the other hand, appear to prolong (stabilize) the LEV structure (Lentink & Dickinson 2009). For a translating wing, after the initial LEV is shed, alternating TEV and LEV of diminishing amplitude are shed until periodic or quasi-periodic vortex shedding is attained. The “extra” lift force of the initial LEV has been measured to be as much as 80% above the steady-state (time-averaged) value (Dickinson & Gotz 1993). The LEV, and its associated lift increment, are similar to the dynamic stall vortex that is produced and shed during rapid pitch up to high angles of attack (e.g. Carr 1988).

(b) Transient response to actuation

As discussed above, understanding the transient response to initiation, termination, or other changes to actuation parameters is essential to the development of closed-loop flow and/or flight control strategies. Relatively few experimental and computational studies have addressed this issue. Amitay & Glezer (Amitay & Glezer 2002, 2006) examined the response of a symmetric NACA airfoil at Re = 3 \times 10^6 and \(\alpha = 17.5^\circ \) to a burst of high-frequency synthetic jet actuation. The response of the actuator consists of several ejection/suction phases of the actuator \(f^+ = 10 \) with rapidly diminishing amplitude. The phase-average circulation flux in the wake was considerable despite the low actuation amplitude \(c_\mu \approx 10^{-3} \), and consisted of an initial negative contribution to the circulation, followed by a large positive vortex being shed into the wake, and additional oscillations of diminishing amplitude. The total duration of the transient response was long compared to the actuation, lasting several hundred actuation cycles, or about 10 convective time units \(t^+ = \frac{t U}{c} = 10 \). The response to step changes in actuation has also been studied (Amitay & Glezer 2002; Darabi & Wygnanski 2004a,b) and shows similarly long transient times when toggling between fully separated and controlled flow states. Similar to the burst of actuation, the forced reattachment first results in a negative vortex followed by the shedding of large, positive vortices. Darabi & Wygnanski (2004b) studied flow over a deflected flap, and showed that the response scales well with convective time;
at a minimum, when the actuation amplitude is sufficiently large, the controlled state is reached after about $t^+ = 20$. At lower Reynolds number, the response is more oscillatory, and seems to consist of consecutive shedding of large-scale vortices from the flap. Toggling off control results in transients of similar duration, but the early response includes the formation of a large (positive) vortex which Darabi & Wygnanski (2004b) liken to the DSV.

Similar experiments for $Re = 10^4$ to 10^5 have been conducted in the semicircular airfoil in the IIT wind tunnel with leading-edge pulsed-jet or synthetic jet actuators, and they reveal strikingly similar transients to the 2D airfoils and flaps previously studied. Figure 4 shows the transient lift response to a single pulse of the jets as well as the scaling of the maximum lift increment achieved at $\alpha = 20^\circ$, for a range of free stream speed of 2.5 to 8 m/s, pulse duration (valve time on), Δt from 0.005 to 0.06 s (or $0.06 < \Delta t^+ < 2$), and actuator supply pressure, Δp_j, from 3.45 to 34.5 kPa. Dimensional analysis suggests that, for a fixed actuator design, $\Delta C_{L_{\text{MAX}}} = \text{fun} \left(\alpha, \frac{U_j}{U}, \Delta t^+, \text{Re} \right)$. As is seen in the plot, a reasonable collapse of the data is achieved by neglecting the variation with Δt^+ and Reynolds number. The scatter is generally within the uncertainty in the force measurements. The lack of dependence on Δt^+ is indicative of the short (impulsive) actuation. The maximum lift increment is also quite similar as the time-averaged value when actuators are operated continuously at $f^+ = 1.16$, show in figure 2. The duration of the pulse, $t^+ \approx 10$, scales well with convective time units, and is similar to that measured by Amitay & Glezer (2006) and Siauw et al. (2010) with different actuators. In the figure we have superposed the lift response from a companion experiment where synthetic-jet actuators were used, as well as results from Woo et al. (2008), which utilized a NACA 4415 at $\alpha = 20^\circ$ with $Re = 570,000$, and a burst from a pulse combustion actuator. The ordinate is scaled by the maximum value in order to compare the shape and timescale of response for different actuators (with different amplitudes), and because Woo et al. report the change in circulation flux in the wake rather than lift. The time axis was also shifted slightly to align the maxima of the curves owing to slightly different time delays in the different actuation system.
The apparent invariance of the response with respect to the details of the actuator again tends to indicate that these experiments are revealing the (fluid mechanical) impulse response of the airfoil to a small perturbation near the leading edge. For a linear system, at least, the response can be used as a kernel to predict the lift response to arbitrary input signals. Such an approach is discussed below. Phase-locked PIV (not shown) along the airfoil midspan reveals a process similar to that documented and described on a 2D airfoil by Woo et al. (2008). During and just after the pulse a negative (CCW) vortex is formed as the actuator jet pushes into the separated region, and begins a process where the entire separated region is detached and advected downstream. Following this, a fresh LEV begins to form and is eventually shed, in a process that appears similar to that which occurs following the initial separation on an impulsively-started airfoil and the dynamic stall process during rapid pitch up. We note that Siauw et al. (2010) report being able to capture the dynamics of the transient process using a four-state dynamical system using a proper orthogonal decomposition (POD) and Galerkin projection approach.

The single pulse response was used as a kernel (Williams et al. 2009) to predict the time varying lift signals that would be obtained from more complicated actuator inputs. Sequences of multiples pulse (3, 5, and 10 pulse) and low-frequency square-wave modulation of continuous pulsation were used as inputs to the linear convolution function. The convolution was able to reproduce the general features observed in the experimentally measured time varying lift response. The modulated continuous pulsation, the approach captured the shift in the average lift coefficient and the phase of the lift fluctuations and explains the connection between the static map and impulse response of lift increments (figures 2, right, and 4, respectively).

4. Closed-loop control

While open-loop actuation is capable of enhancing post-stall lift under steady flight conditions, there can distinguish two goals of controlling actuation with sensor-based feedback. The first, and more ambitious goal is to alter the dynamics of the flow in ways inaccessible to open-loop actuation. For example, is it possible to eliminate vortex shedding? The second, more modest goal is to improve flight performance in unsteady flight, especially in regimes where conventional control surfaces may not be effective. Obviously the distinction between these becomes blurred as the timescales of imposed unsteadiness approach the intrinsic fluid dynamic timescales associated with either vortex shedding or shear layer instabilities.

For relatively slow changes in operating conditions, one may schedule operating parameters in a way that is not fundamentally different from open-loop actuation, though there remain challenges such as the hysteresis associated with toggling between separated and attached flow (e.g. Darabi & Wygnanski 2004a). For example, Magill et al. (2003) used pressure fed back to a dynamic stall model to detect imminent separation during cyclic pitching of an airfoil and apply pulsed vortex generator jets only over a portion of the pitch cycle and achieve similar lift increases as continual operation. Pinier et al. (2007) controlled incipient separation with a proportional feedback signal based on the first global mode obtained using POD. Benard et al. (2010a) exploited hysteresis in the separation/reattachment
process by detecting the signature of incipient separation with a pressure sensor, and then lowering the actuator voltage when the flow is already attached.

A next level of complication is to optimize performance as a function of input parameters. Benard et al. (2010b) used the measured lift to adjusted the voltage to a dielectric barrier discharge actuator on a NACA 0015 airfoil to autonomously reattach the flow at different speeds, and for step changes to the operating conditions. Becker et al. (2007) implemented multiple-input multiple-output extremum seeking control for spanwise distributed actuation and (pressure) sensing for pulsed-jet actuators on a flap, and were able to achieve higher lift than open-loop actuation, including lower angles of attack where the flow was not fully separated and where open-loop control showed little effect. Taira et al. (2010) also used extremum seeking to optimize actuation frequency in numerical simulations of 3D airfoils at low Re. Muse et al. (2008) used a neural network adaptive controller to control the pitch-plunge motion of an airfoil in a wind tunnel.

For sufficiently fast changes in operating conditions there are bandwidth limitations for a particular architecture, i.e. the controller and the dynamic response of actuators, sensors, and the inherent response of flow fluctuations to actuation and to changes in operating conditions. As shown in the last section, the lift response to actuation in the separated regime is governed by the convective time scale and reaches a peak transient lift at $t^+ \approx 3$. For MAV, this implies a full-scale frequency on the order of 1 to 100 Hz, and this is likely to be considerably lower than bandwidth limitations associated with the actuation and sensing. The pertinent question is whether this transient response to actuation can be shortened with feedback?

To examine this question and the underlying bandwidth limitations of the response to actuation, a series of controllers were designed to suppress lift fluctuations on the semi-circular airfoil discussed in the previous two sections when the freestream speed was allowed to vary by up to 10%, either randomly or sinusoidally up to $f^+ \approx 0.12$. The model was held fixed with $\alpha = 20^\circ$, with a resulting (unforced) vortex shedding frequency of $f^+ = 0.66$. The lift force and freestream speed (measured with a hotwire upstream of the model) were used as inputs to the controller. The output was a signal to the pressure regulator (bandwidth $f^+ \approx 0.08$) that controlled the amplitude of the pulsed-blowing.

The first controller was based on a quasi-steady approach which suppressed lift fluctuations at the freestream frequency and its harmonic, but the bandwidth was limited to $f^+ = 0.008$, indicating the importance of compensating for not only the unsteady aerodynamics, but also the time lag due to actuation. The second controller increased the bandwidth by tuning the time delay associated with the lift response to actuation. It suppressed relatively higher frequency (up to $f^+ = 0.03$) disturbances, but only worked with sinusoidal disturbances of the specified frequency. The third controller Kerstens et al. (2010) used modern system identification methods to obtain linear black-box models for the unsteady aerodynamics and the transient response to actuation. The architecture is shown in figure 5; the unsteady aerodynamic model is $G_d(s)$, and was inverted to produce the feedforward controller $K_d(s)$. The dynamics of the lift response to actuation are modeled in the plant, $G_p(s)$. The measured lift feeds back and is subtracted from the reference lift to form an error signal, which is the input to a H_∞ controller $K(s)$. A first order model with a time delay provided a good representation of the response of the separated flow to unsteady actuation. In combination with a linear model of the
unsteady aerodynamics, a closed-loop controller was designed that demonstrated the ability to suppress random gusts with a bandwidth from DC to $f^+ = 0.036$. An example of the controller’s ability to suppress lift fluctuations in a randomized velocity is shown in figure 5. The good agreement between the measured and predicted lift demonstrates the efficacy of the unsteady aerodynamic model. The controlled cases show a significant reduction in lift oscillation.

Figure 5: Controller architecture (left) and phase-averaged lift (right) for uncontrolled (magenta) and controlled cases (red). The control set point was 1.8N. The unsteady aerodynamic model prediction is also shown for the uncontrolled (black) and controlled (blue) cases. Reproduced from Kerstens et al. (2010).

An important result of this study was the recognition that the time delay associated with the LEV formation and shedding was responsible for limiting the bandwidth. It may be possible to design faster controllers, but they will not come from faster actuators. The controllers will have to interact directly with, and utilize information from, the vortex formation process. This is a difficult task, but some progress has been made in numerical investigations of 2D flows at much lower Re. Ahuja & Rowley (2010) were able to design a linear-quadratic regulator capable of eliminating vortex shedding on an inclined flat plate at Re = 100. Control design was based on a reduced-order model formed using balanced POD for the stable subspace of the linearized system combined with the exact description of the conjugate pair of unstable eigenvectors leading to vortex shedding. The actuator was a body force placed near the trailing edge, and two velocity sensors were placed in the near wake. The controller was effective at suppressing vortex shedding in the full nonlinear simulations. For higher Re, where vortex shedding becomes less regular, Joe & Colonius (2010a) showed that a phase-lock loop compensator could be used to restore phase locking between the lift fluctuations and a small body force place near the leading or trailing edge, and reproduce high-lift limit cycles that were achieved at lower Re and/or lower angles of attack. The compensator used a short-time Fourier transform and Kalman filter in order to estimate the instantaneous phase and frequency of vortex shedding (from the lift) and make slight adjustments to the forcing. In both of these studies, actuation at the leading and trailing edges was effective. Numerical simulations of the adjoint linearized equations were used in both studies and indicated strong regions of receptivity to actuation in both regions, but, in terms of controller performance, trailing-edge actuation was superior. A similar conclusion was found for 3D separated flow on a low AR, low Re flat
plate Taira & Colonius (2009a), but it is not clear the extent to which trailing edge actuation remains superior as Re is increased.

5. Summary

Sustained pulsatile or sinusoidal leading-edge actuation on two- and three-dimensional airfoils at low to moderate Re provokes a strong vortex shedding when the frequency of actuation is close to the vortex shedding frequency, $St \approx 0.2$. This implies, for $\alpha \approx 20^\circ$, a reduced frequency of around $f^+ = 0.6$, with most studies showing a fairly flat mean lift enhancement over a range of frequencies for $0.3 < f^+ < 3$. For both continuous actuation and a single-pulse actuation, the steady state and peak-transient lift coefficients, respectively, scale well the actuator velocity ratio, with an approximately linear dependence up to saturation. The transient response to a single pulse of actuation produces a similar lift increment over a convective time scale of about $t^+ = 10$, provided the pulse duration is short compared to the convective time scale. The single pulse first produces a decrease in lift as the separated region is lifted and cleared from the airfoil, allowing a new leading-edge vortex to grow and shed. The transient lift recorded during this process is remarkable for both its strength, which is similar in magnitude to the lift increment under continuous actuation, and for its similar signature for flows on different geometries and with different actuators.

Closed-loop control has been successfully implemented to maintain steady lift under sinusoidally varying freestream speed, a model problem for gust alleviation on MAV. However, there has been an upper bound of $f^+ < 0.03$ beyond which these controllers are ineffective. It appears that the system performance is limited by the fluid dynamic (vortex shedding) response to a pulse of actuation, rather than bandwidth limitations associated with the actuator or with other aspects of the hardware and dynamics. Faster controllers will have to interact directly with, and better utilize information from, the vortex formation process during actuation. Numerical studies of two-dimensional flows at lower Reynolds numbers have, in fact, demonstrated feasibility of both eliminating vortex shedding entirely, and synchronizing pulsation to achieve high-lift limit cycles that are unstable in the absence of feedback. These and future studies will provide important clues about how to develop faster controllers in the laboratory. Finally, to provide more data and insights into the fundamental flow physics, future studies, especially of three-dimensional geometries relevant to MAV, should also focus on unsteady effects associated with transient and continuous actuation.

Our work was supported by the U.S. AFOSR under grants FA9550-05-1-0369 and FA9550-09-1-0189. We wish to thank Prof. Clancy Rowley, Prof. Gilead Talmor, Mr. Vien Quach, and Mr. Wesley Kerstens for their important contributions. We are also indebted to Prof. Rudibert King for his important contributions in developing the closed-loop controllers.

REFERENCES

Article submitted to Royal Society

Control of vortex shedding on airfoils

Article submitted to Royal Society