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We present a strongly-coupled immersed-boundary method for flow–structure interaction 
problems involving thin deforming bodies. The method is stable for arbitrary choices of 
solid-to-fluid mass ratios and for large body motions. As with many strongly-coupled 
immersed-boundary methods, our method requires the solution of a nonlinear algebraic 
system at each time step. The system is solved through iteration, where the iterates are 
obtained by linearizing the system and performing a block-LU factorization. This restricts 
all iterations to small-dimensional subsystems that scale with the number of discretization 
points on the immersed surface, rather than on the entire flow domain. Moreover, the iter-
ation procedure we propose does not involve heuristic regularization parameters, and has 
converged in a small number of iterations for all problems we have considered. We derive 
our method for general deforming surfaces, and verify the method with two-dimensional 
test problems of geometrically nonlinear flags undergoing large amplitude flapping behav-
ior.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The immersed-boundary (IB) method treats the fluid and immersed body with separate grids, which obviates the need 
for computationally expensive tasks like re-meshing. For this reason, IB methods are often used in flow–structure interaction 
(FSI) problems with bodies undergoing large deformations and rotations. Yet, efficiently handling the interface constraint, 
which nonlinearly couples the fluid and structure, remains a challenge. We restrict our attention here to strongly-coupled IB 
methods, which strictly enforce the constraint. Weakly coupled IB methods do not impose the constraint, and are unstable 
for small solid-to-fluid mass ratios and large body motions [1–3].

Due to the nonlinear nature of the constraint, most strongly-coupled methods must solve a large nonlinear system of 
equations at each time step. The block Gauss–Seidel procedure is one approach to solving this nonlinear system. It is attrac-
tive for its ease of implementation, but requires relaxation to converge for a wide range of mass ratios. Employing relaxation 
requires a heuristically chosen parameter, and can involve dozens of iterations to converge for small mass ratios [4], though 
Wang and Eldredge [5] improved this convergence behavior using information about the system’s added mass. Alternatively, 
the nonlinear system can be solved with a Newton–Raphson method. This removes the need of free parameters, and typi-
cally requires a small number of iterations irrespective of the mass ratio. However, this approach often involves computing 
several matrix–vector products per time step, each involving large Jacobian matrices [6–8].
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In the context of rigid body FSI problems, some strongly-coupled methods evaluate the constraint equation at the pre-
vious time step, which allows for the resulting equations of motion to be linear [9,10]. Thus, these methods do not require 
iterations, though the temporal accuracy is reduced to first order due to the time lag introduced in the constraint. It is 
difficult to avoid iteration in deforming body problems, since the solid equations have a nonlinear stiffness term that is 
frequently treated implicitly when discretized in time.

We present a strongly-coupled IB method for thin deforming surfaces that iteratively solves the nonlinear algebraic 
equations using a linearization of the system, as is done in the Newton–Raphson approach. Therefore, our method does 
not require free relaxation parameters, and has exhibited fast convergence behavior for all problems we have considered 
so far. A distinction between our method and a standard Newton–Raphson implementation is that we avoid large Jacobian 
matrices by performing a block-LU factorization of the linearized system. This reduces all iterations to subsystems whose 
dimensions scale with the number of discretization points on the immersed surface, rather than on the entire flow domain.

Our method treats the fluid with the two-dimensional (2D) discrete streamfunction formulation of Colonius and Taira 
[11], and the solid with a finite element formulation that applies to various structures undergoing large deformations and 
rotations. We verify our method on 2D test problems of flow past deforming flags. The test problems involve large body 
motions and a wide range of mass ratios, and for all cases our proposed iteration process required a small number of 
iterations to converge. To supplement the 2D method presented in the main text, we derive in Appendix A an analogous 
method that treats the fluid with primitive variables. This method has a similar iteration procedure to the proposed 2D 
formulation, and can be applied in both 2D and 3D.

2. Governing equations

We consider a fluid domain � and an immersed body �. We let x denote the Eulerian coordinate representing a position 
in space, and define χ(s, t) as the Lagrangian coordinate attached to the body � (s is a variable that parametrizes the 
surface). The dimensionless governing equations are written as

∂u

∂t
+ u · ∇u = −∇p + 1

Re
∇2u +

∫
�

f(χ (s, t))δ(χ (s, t) − x)ds (1)

∇ · u = 0 (2)

ρs

ρ f

∂2χ

∂t2
= 1

ρ f U 2∞
∇ · σ + g(χ) − f(χ ) (3)

∫
�

u(x)δ(x − χ(s, t))dx = ∂χ(s, t)

∂t
(4)

In the above, x, χ , and s were nondimensionalized by a characteristic length scale, L; u was nondimensionalized by 
a characteristic velocity scale, U∞; t was nondimensionalized by L/U∞; and p and f were nondimensionalized by ρ f U 2∞ , 
where ρ f is the fluid density (ρs is the solid density). The Reynolds number in (1) is defined as Re = U∞L/ν , where ν is the 
kinematic viscosity of the fluid. The term g represents a body force per unit volume (e.g. gravity) applied to the immersed 
body, and was nondimensionalized by ρ f U 2∞/L. The momentum equations (3) were divided by ρ f U 2∞/L to arrive at the 
form seen above.

In (3), the time derivative is understood to be a Lagrangian derivative, and the stress tensor used is the Cauchy stress, 
which is related to the second Piola–Kirchhoff stress in the undeformed configuration, σ K , by

σmn = 1

J

∂xm

∂χ0
i

∂xn

∂χ0
j

σ K
i j (5)

where χ0 is the position of the body in its undeformed configuration, and J = det(∂xi/∂χ
0
j ). The second Piola–Kirchhoff

stress is related to the strains within the solid via

σ K
i j = Dijkl Ekl (6)

where D depends on Young’s Modulus, E , the bulk shear modulus, G , and Poisson’s ratio, νs; and E is the strain tensor 
given by

Eij = 1

2

(
∂χi

∂χ0
j

+ ∂χ j

∂χ0
i

+ ∂χm

∂χ0
i

∂χm

∂χ0
j

)
(7)

(summation implied on repeated indices). Again, all variables that comprise E were nondimensionalized using the charac-
teristic length L.
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The boundary condition on the interface � is explicitly written as a constraint in (4). Its role is analogous to that of 
the continuity equation in computing the pressure: it is used to solve for the singular source term f(χ ) that enforces the 
boundary condition on �. Note that f(χ ) represents the surface stress imposed on the fluid by the immersed body. This can 
be seen by multiplying the momentum equations (1) by δ(x − χ(s, t)) and integrating over the domain � to get

f(χ (s, t)) =
[(

∂

∂t
− 1

Re
∇2

)
u + u · ∇u + ∇p

] ∣∣∣∣
x=χ(s,t)

∀ χ ∈ ∂� (8)

The negative of this term represents the stress imposed on the immersed body by the fluid (including added mass effects), 
and is therefore the source term in (3). The immersed-boundary method places fictitious fluid inside of bodies that produces 
unphysical contributions to the surface stress in (8). For rigid body FSI problems (e.g., freely falling cylinders), the spurious 
stress contribution can be explicitly removed to obtain the correct stress [10], but this procedure is difficult to extend to 
deforming bodies. We therefore restrict our attention to thin bodies, such as shells or membranes, where these unphysical 
contributions are negligible.

3. Numerical method

In this section, we discretize the equations of motion in space to arrive at the coupled semi-discrete equations of motion: 
the fluid equations are discretized using the 2D discrete streamfunction formulation of Colonius and Taira [11], and the solid 
equations are discretized using a finite element formulation. We then discretize in time and introduce an efficient iteration 
procedure for solving the resulting nonlinear algebraic equations.

3.1. Semi-discrete equations

We begin by spatially discretizing the equations of motion for the fluid on a staggered uniform Cartesian grid as

u̇ +N (u) = −Gp + Lu + H(χ) f̃ (9)

Du = 0 (10)

where the overdot denotes differentiation with respect to time, u, p, χ and f̃ denote the spatially discrete velocity, pres-
sure, body position, and surface stresses; N (u) is a discretization of the nonlinear term; G , L, and D are discretizations 
of the gradient, Laplacian, and divergence operators, respectively; and H(χ) is a discretization of the term involving the 
delta function in (1). Spatial derivatives are approximated with the standard second-order finite difference operators. For 
computational efficiency, the spatial operators are formulated such that D = −G T and H = −E T (to within a scaling factor), 
where E is a discretization of the operator in (4). See reference [12] for more details.

Following Colonius and Taira [11], we avoid the incompressibility constraint by using a discrete curl operator that lies in 
the null space of the discrete divergence operator D . That is, DC ≡ 0, which implies that C T G = −(DC)T ≡ 0. The discrete 
curl operator engenders the use of a discrete streamfunction, s, that is related to the discrete velocity field by u = C s. Using 
this and premultiplying (9) and (10) by C T then gives the final form of the semi-discrete fluid equations that we consider:

C T C ṡ +N (C s) = C T LC s − C T E T (χ) f (11)

where f is used instead of f̃ in (11) to account for the scaling factor used in writing H as E T (see reference [12] for more 
details).

The equations for the solid are discretized in space using a finite element procedure: the body is broken up into isopara-
metric finite elements with an associated set of compatible shape functions [13]. A variable (·) belonging to the surface may 
be expressed with these basis functions as

(·)(χ ) =
Nnode∑
j=1

(·) jb j(χ) (12)

where (·) j is the nodal value of (·) and b j is the shape function corresponding to node j. Using this expansion of each 
variable in (3), we arrive at a system of ordinary differential equations in time by multiplying (3) by the various shape 
functions and integrating over the volume of the immersed body. Letting B be a matrix containing the various shape 
functions b j , we write the spatially discretized form of (3) as

Mχ̈ + R(χ) = Q (g + W (χ) f ) (13)

where
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M = ρs

ρ f

Nel∑
j=1

∫
�0

j

BT Bdχ0 (14)

R(χ) = 1

ρ f U 2∞

Nel∑
j=1

∫
�0

j

BT
Eσ K dχ0 (15)

Q =
Nel∑
j=1

∫
�0

j

BT Bdχ0 = ρ f

ρs
M (16)

In the above, �0
j denotes element j of � in its undeformed configuration, B E is a matrix containing the derivatives of the 

shape functions with respect to the nodal positions, and σ K contains nodal values of its continuous analog. Note that σ K is 
arranged as a vector so that R(χ) is also a vector. The nonlinearity of R(χ) is due to the dependence of B E and σK on χ .

It is worth mentioning that the surface stresses f obtained by many immersed-boundary methods contain spurious 
oscillations [14–16]. In the context of the present immersed-boundary method, these oscillations are due to the fact that 
the surface stresses are obtained from an ill-posed integral equation. We recently observed that for an appropriate choice 
of delta function, a weighting matrix, W , may be used to obtain accurate surface stresses [14]. Thus, W is included in (13)
to apply the physically correct surface stresses on the immersed surface. The specific form of W is described in reference 
[14], but we note here that W f is a discretization of∫

�

∫
�

f(χ(s′, t))δh(x − χ(s′, t))δh(x − χ(s, t))ds′dx∫
�

δh(x − χ(s′, t))ds′ (17)

where δh is a continuous delta function whose support depends on the grid spacing h (see, for example, the review of 
Peskin [17] for more information on continuous delta functions and how to construct them). The expression in (17) is a 
spatially first order approximation to f(χ), so the presence of W is a first order modification of (3). In the present work, 
we use the delta function of Roma [18], which we found to provide a good combination of computational efficiency and 
accuracy of the surface stress.

Equation (13) and the corresponding definitions of M , R , and Q are valid for a variety of structures undergoing large 
deformations, displacements, and rotations. In this work we restrict our attention to flags, which we model as thin elastic 
beams using a corotational formulation [19]. In this formulation, arbitrarily large displacements and rotations are accom-
modated by attaching a local coordinate frame to each flag element. The strains are assumed to be small in this frame, and 
the corresponding internal stresses R(χ) are well known (see, e.g., reference [19]). Structures other than flags would require 
changes in the choice of elements, shape functions, and model for σ K . However, these changes would not affect the nature 
of (13) or the ensuing time discretization procedure.

Using these discretizations of the fluid and solid equations, the discrete form of the constraint (4) is written in terms of 
the streamfunction as

E(χ)C s − ζ = 0 (18)

Defining ζ := χ̇ , the fully coupled FSI equations may be written as a first order system of differential–algebraic equations 
given by

C T C ṡ = −N (C s) + C T LC s − C T E T (χ) f (19)

M ζ̇ = −R(χ) + Q (g + W (χ) f ) (20)

χ̇ = ζ (21)

E(χ)C s − ζ = 0 (22)

Note that (9)–(10) and (13) are valid in both 2D and 3D; the restriction to 2D is due only to the discrete streamfunction 
formulation (11). We derive in Appendix A an alternative method that treats the fluid using (9)–(10). This method has an 
analogous iteration procedure to the one proposed in section 3.2 and is readily extendible to 3D.

3.2. Time discretization and efficient factorization procedure

We discretize (19) using an Adams–Bashforth scheme for the nonlinear term and a Crank–Nicolson method for the 
diffusive term. Equations (20)–(21) are discretized using an implicit Newmark scheme. The constraint equation (22) is 
evaluated at the current time step. That is, the method is strongly-coupled, which is necessary for the method to be stable 
for a wide range of mass ratios and in the presence of large body displacements [1–3]. We discretize the equations of 
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motion in the aforementioned way to illustrate the iteration procedure on a commonly used scheme. However, the proposed 
iteration approach can readily be extended for a variety of time stepping schemes.

Discretizing (19)–(22) as described in the previous paragraph leads to a system of nonlinear algebraic equations given by

C T AC sn+1 + C T E T
n+1 fn+1 = r f

n (23)

4

�t2
Mζn+1 + (R(χn+1) − Q Wn+1 fn+1) = rζ

n (24)

2

�t
χn+1 − ζn+1 = rχ

n (25)

En+1C sn+1 − ζn+1 = 0 (26)

where A = 1
�t I − 1

2 L, r f
n = ( 1

�t C T C + 1
2 C T LC)sn + 3

2 C TN (C sn) − 1
2 C TN (C sn−1), rζ

n = M( 4
�t2 χn + 4

�t ζn + ζ̇n) + Q g , and 
rχ

n = ζn + 2
�t χn . Note that the operators E , E T , and W are given subscripts to indicate their dependence on χ .

We now describe an iteration procedure for using a guess for the solution at iteration (k) to compute a new guess at 
iteration (k + 1) (we use the solution at time step n as the guess for (k) = 0). To do this, we write χ(k+1)

n+1 = χ
(k)
n+1 + �χ , 

ζ
(k+1)
n+1 = ζ

(k)
n+1 + �ζ , where the increments �χ , �ζ are assumed to be small. Substituting this decomposition into (23)–(26)

and retaining first order terms in the increments and �t gives the linear system1

⎡
⎢⎢⎢⎢⎣

C T AC 0 0 C T E(k)T
n+1

0 0 4
�t2 M + K (k) −Q W (k)

n+1

0 −I 2
�t I 0

E(k)
n+1C −I 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

sn+1

�ζ

�χ

f (k+1)
n+1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

r f
n + O (�t)

rζ
n − 4

�t2 Mχ
(k)
n+1 − R(χ

(k)
n+1) + O (�t)

rχ
n − 2

�t χ
(k)
n+1 + ζ

(k)
n+1

ζ
(k)
n+1 + O (�t)

⎤
⎥⎥⎥⎥⎥⎦ :=

⎡
⎢⎢⎢⎣

r f
n

rζ (k)

rχ (k)

rc (k)

⎤
⎥⎥⎥⎦

(27)

where K (k) = dR/dχ |
χ=χ

(k)
n+1

. For flags this stiffness matrix has well known analytical expressions [13,19].

The linear system (27) may be factored using a block-LU decomposition. Defining K̂ (k) := 4
�t2 M + K (k) and B(k)

n+1 :=
E(k)

n+1C(C T AC)−1C T E(k)T
n+1 , the factored equations are

s∗ = (C T AC)−1r f
n (28)[

B(k)
n+1 I

− 2
�t Q W (k)

n+1 K̂ (k)

][
f (k+1)
n+1

�ζ

]
=

[
E(k)

n+1C s∗ − rc (k)

2
�t rζ (k) − rχ (k)

]
(29)

�χ = �t

2
(�ζ + rχ (k)) (30)

sn+1 = s∗ − (C T AC)−1C T E T
n+1 fn+1 (31)

The LU-factorized equations (28)–(31) are analogous to the classical fractional-step procedure used for the Navier–Stokes 
equations. In fact, Perot [20] showed that the fractional-step procedure for the Navier–Stokes equations can be derived by a 
block-LU factorization of the associated semi-discrete system. Taira and Colonius [12] used a block-LU factorization to derive 
an analogous fractional step procedure for an immersed boundary method applied to rigid bodies undergoing prescribed 
kinematics, and Lācis et al. [10] extended this analysis to allow for rigid-body flow–structure interaction. Our method applies 
this block-LU fractional-step philosophy to FSI problems involving deforming bodies.

The fractional-step procedure (28)–(31) has a physical interpretation: first, a trial streamfunction that does not account 
for the updated body position and velocity boundary conditions is computed through (28). Then the surface stress and the 
associated body position and velocity are computed through iteration in (29)–(30). Finally, in (31) the updated surface stress 
is used to remove the part of the streamfunction that does not satisfy the updated boundary conditions.

Note that (28) does not depend on information at time step n + 1, and (29)–(30) do not require knowledge of sn+1. 
Thus, (28) can be solved once and for all at the beginning of each time step, and sn+1 only needs to be computed once, 
after (29)–(30) have been iterated to convergence. This has the benefit that all iterations are restricted to (29)–(30), which 
have dimensions on the order of the number of body points, rather than the total number of points in the flow domain. 
We do not write a superscript on sn+1 since it does not need to be iterated on. Wang et al. [5] also restricted iterations to 

1 Derivative terms that arise in the expansion of E(k+1)
n+1 , E(k+1)T

n+1 , and W (k+1)
n+1 may be neglected to within O (�t). For example, the fourth block equation 

of (27) including this extra term is E(k)
n+1C sn+1 + (D E(k)

n+1�χ)C sn+1 − �ζ = ζ
(k)
n+1. The D E term is of order O (�t) compared with the �ζ term, since by the 

third block equation �χ = O (�ζ�t).
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Fig. 1. Flow moves from left to right past a flag in the standard configuration (left) or the inverted configuration (right).

small dimensional subsystems like (29)–(30). In their case, the solid equations were replaced by the rigid body equations 
of motion, and a block Gauss–Seidel procedure with added mass relaxation was used to solve their analogous nonlinear 
system.

A Poisson-like problem (C T AC)−1 must be solved in (28), (31), and in each matrix–vector multiply with B(k)
n+1. Solving 

the Poisson-like problem may be done efficiently using fast Fourier transforms, but this requires a number of operations 
that scales with the number of points on the flow domain. Thus, the computation and storage of (K̂ (k))−1 may be small 
compared with solving the Poisson-like problem. In this case one may analytically perform a block-Gaussian elimination of 
(29) to get(

B(k)
n+1 + 2

�t
(K̂ (k))−1 Q W (k)

n+1

)
f (k+1)
n+1 = E(k)

n+1C s∗ − rc (k) − 2

�t
(K̂ (k))−1rζ (k) + rχ (k) (32)

�ζ = 2

�t
(K̂ (k))−1(rζ (k) + Q W (k)

n+1 f (k)
n+1) − rχ (k) (33)

One may therefore equivalently solve (28)–(31) with (29) replaced by (32)–(33), which has the benefit of avoiding the 
inhomogeneous block structure of (29). We use this formulation for the results shown below, as we found it to be more 
efficient for the test problems considered. We solve (32) using the BiCGSTAB method, which typically requires 2–8 iterations 
to converge using f (k)

n+1 as the initial guess. Moreover, the number of iterations required by BiCGSTAB often decreases as k
increases, since f (k)

n+1 becomes an increasingly good guess for f (k+1)
n+1 .

It is also worth noting that the updates for χ(k)
n+1, ζ (k)

n+1, and f (k)
n+1 do not depend on a heuristic relaxation parameter, as 

is often required when applying the block Gauss–Seidel iterative procedure to FSI solvers. Moreover, the proposed iteration 
procedure has required a small number of iterations to converge for all problems we have considered so far.

4. Verification on flapping flag problems

We verify our method for several test problems of 2D flow past thin deforming flags. The dynamics of this system are 
governed by the Reynolds number, dimensionless mass ratio, dimensionless bending stiffness, and Froude number. These 
are given, respectively, as

Re = U∞L

ν
, Mρ = ρsh

ρ f L
, KB = E I

ρ f U 2∞L3
, Fr = U∞√

gL
(34)

where h is the thickness of the flag, E I is the bending stiffness of the flag, ν is the kinematic viscosity of the fluid, and g is 
the gravitational constant.

We consider problems with the flag pinned at the leading edge (standard configuration) and with the flag clamped at 
the trailing edge (inverted configuration). Schematics of the different problem setups are shown in Fig. 1.

Each configuration presents different challenges: flags in the standard configuration are typically associated with smaller 
mass ratios, whereas those in the inverted configuration often undergo larger motions and have greater dimensionless 
bending stiffnesses.

The flow equations are solved using a multidomain approach: the finest grid surrounds the body and grids of increasing 
coarseness are used as distance from the body increases (see reference [11] for details). For all cases, the immersed-
boundary spacing is set to be twice that of the flow grid spacing on the finest sub-domain. We found that to give 
well-conditioned matrices B(k)

n+1 without making the body porous (Kallemov et al. [21] also found this ratio to be preferable). 
We used a convergence criteria of ||�χ ||∞/||χ(k+1)

n+1 ||∞ ≤ 1 × 10−7 when iterating between (30), (32), and (33).

4.1. Flow past a flag in the standard configuration

We first consider flow past a deforming flag in the standard configuration with Re = 1000, Mρ = 0.075, KB = 0.0001, and 
Fr = 0 (i.e., no gravitational body force). This choice of parameters leads to limit cycle flapping, which we triggered in our 
simulations by initializing the flag at θ = 1◦ (see Fig. 1 for the definition of θ ). We show the transverse tip displacement 
and lift coefficient in Fig. 2. After an initial transient, the trailing edge of the flag has oscillatory transverse displacement 
of fixed amplitude and frequency. The lift and tip displacement share the same frequency but are out of phase. As the flag 
nears its peak amplitude, the lift force opposes it enough to overcome the flag’s inertia, which initiates flag motion in the 
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Fig. 2. Transverse displacement of the flag’s trailing edge (black) and coefficient of lift (gray) for Re = 1000, KB = 0.0001, and Fr = 0.

Table 1
Amplitude and frequency associated with the transverse displacement of the flag’s 
trailing edge; obtained for Re = 1000, Mρ = 0.075, KB = 0.0001, and Fr = 0.

Amplitude Frequency (St)

Connell et al. [22] ±0.096 0.93
Gurugubelli et al. [23] ±0.098 0.95
Present ±0.097 0.94

Table 2
Amplitude and frequency associated with the transverse displacement of the flag’s 
trailing edge; obtained for Re = 200, Mρ = 1.5, KB = 0.0015, and Fr = 1.4.

Amplitude Frequency (St)

Huang et al. [24] ±0.35 0.30
Wang et al. [5] ±0.35 0.31
Lee et al. [25] ±0.38 0.31
Present ±0.38 0.32

other direction. This interplay of fluid and flag forces modulates and sustains the limit cycle flapping behavior seen for this 
set of parameters. Our computed amplitude and frequency of the flag tip displacement in the limit cycle regime agree well 
with published values for these quantities (see Table 1).

The finest domain for this simulation was of size [−0.2, 1.8] × [−0.3, 0.3], and the entire flow domain size was 
[−15.20, 16.80] × [−4.78, 4.78]. The grid spacing on the finest subdomain was h = 0.0025, and the time step was 
�t = 0.0006. Using a grid spacing of h = 0.003 changed our results in Table 1 by less than one percent. There were a 
total of 960,000 points in the flow domain, and it took 30.83 hours to run this simulation on a single CPU core. Five itera-
tions of (30), (32), and (33) were required for the first time step, and a maximum of three iterations were required for all 
remaining time steps.

Limit cycle flapping also occurs for Re = 200, Mρ = 1.5, KB = 0.0015, and Fr = 1.4. We show in Table 2 the associated 
amplitude and frequency of the transverse trailing edge displacement. For comparison with the literature, we initialized the 
flag at θ = 18◦ . Our finest sub-domain for this problem was of size [−0.2, 1.8] × [−0.9, 0.9], and the total domain size was 
[−15.20, 16.80] ×[−7.95, 7.95]. The grid spacing on the finest domain was h = 0.00625, and the time step was �t = 0.0001. 
Using h = 0.005 changed our reported results from Table 2 by less than one percent. There were a total of 460,800 points 
in the flow domain, and it took 10.42 hours to run this simulation on a single CPU core. Three iterations of (30), (32), and 
(33) were required for the first time step, and a maximum of two iterations were required for all remaining time steps.

Fig. 3 gives a time history of the trailing edge transverse displacement for the parameters corresponding to Table 2
(results from references [24,25] are included for comparison). To emphasize the robustness of the method for a range 
of mass ratios, Fig. 3 also shows the trailing edge displacement for Mρ = 0.0001 and Mρ = 100. To our knowledge, the 
Mρ = 0.0001 and Mρ = 100 cases have not been simulated before. Moreover, we were not able to simulate the Mρ = 0.0001
case when solving (23)–(26) with the Gauss–Seidel method, even when using extensive relaxation. Using (30), (32), and (33), 
a maximum of three iterations per time step were required after the first twenty time steps. During the first twenty time 
steps, up to fifteen iterations were required due to the impact of the impulsive start on a flag with such small inertia.
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Fig. 3. Transverse displacement of the flag’s trailing edge for Re = 200, KB = 0.0015, and Fr = 1.4. Left panel: Mρ = 0.0001, middle panel: Mρ = 1.5, right 
panel: Mρ = 100. Present: ——, Lee et al. [25]: �, Huang et al. [24]: �. The insert on the left panel is a zoom-in of the Mρ = 0.0001 case for t ∈ [0.5, 2]. 
Note the different horizontal axis values on each panels.

Fig. 4. Vorticity contours of flow past a deforming flag for Mρ = 0.0001 (top row), Mρ = 1.5 (middle row), and Mρ = 100 (bottom row). Left column: 
t = 1.2; middle column: t = 18; right column: t = 31.2. Contours are in 15 evenly spaced increments from −5 to 5. The other parameters were Re = 200, 
Mρ = 1.5, and Fr = 1.4.

In Fig. 4, we show vorticity contours at different time instances for Mρ = 0.0001, Mρ = 1.5, and Mρ = 100. When 
Mρ = 0.0001, the impulsive start pushes the flag down quickly towards the θ = 0◦ position. At t ≈ 0.5, the vortical structure 
created during the impulsive start reaches the trailing edge of the flag. Due to the flag’s small inertia, this substantially 
affects the trailing edge displacement (see insert in Fig. 3). The vortical structure then advects away from the body, and the 
fluid wake becomes symmetric as the flag fully reaches its θ = 0◦ position. This symmetric wake is a well known feature 
of flow past thin rigid bodies at low Reynolds numbers, and the small inertia of the flag does not allow for any minor 
flag deformations to break the flow symmetry. Thus, the flag stays in this neutral position for all remaining time. When 
Mρ = 1.5, the limit cycle flapping of the flag is associated with a periodic vortex street [5,24,25]. As the flag becomes 
increasingly massive, the flapping amplitude increases. This is associated with a thicker, more irregular wake profile and 
more chaotic flapping behavior. Fig. 3 shows that the Mρ = 100 case does not enter into limit cycle flapping after 250 
convective time units and several periods of flapping. The destabilizing nature of increasing the mass ratio was also noted 
by Connell et al. [22].
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Fig. 5. Snapshots of the flag at various times for the fixed-point stable (left), static divergence (middle), and unstable flapping (right) regimes. Only one 
curve is visible for the fixed-point stable and static divergence cases, since the flag does not deflect about these equilibrium positions.

Table 3
Flapping regimes obtained for different KB values. UF = unstable flapping, SD = static divergence, FPS = fixed point stable. The other parameters were 
Re = 200, Mρ = 0.1, and Fr = 0.

KB

0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 0.51

Gurugubelli et al. [23] UF UF UF UF UF SD SD SD SD SD FPS
Present UF UF UF SD SD SD SD SD SD SD FPS

Table 4
Amplitude and frequency associated with the transverse displacement of the 
flag’s leading edge; obtained for Re = 1000, Mρ = 0.5, KB = 0.4, and Fr = 0.

Amplitude Frequency (St)

Gurugubelli et al. [23] ±0.83 0.204
Present ±0.82 0.198

4.2. Flow past a flag in the inverted configuration

An inverted flag initially placed at θ = 0◦ can enter a wide range of possible dynamical regimes. Three of these are 
fixed-point stable (FS), static divergence (SD), or unstable biased flapping (UF) [23] (see Fig. 5 for an illustration). In Table 3, 
we summarize the regimes we obtained by varying KB for Re = 200, Mρ = 0.1, and Fr = 0. Our finest sub-domain for this 
problem was of size [−0.2, 1.8] × [−0.5, 0.5], and the total domain size was [−15.20, 16.80] × [−16, 16]. The grid spacing 
on the finest domain was h = 0.005, and the time step was �t = 0.001. Using h = 0.004 change our reported results by less 
than one percent. There were a total of 400,000 points in the flow domain, and it took 5.56 hours to run one simulation 
on a single CPU core. Three iterations of (30), (32), and (33) were required for the first time step, and a maximum of two 
iterations were required for all remaining time steps. The table also shows the regimes computed by Gurugubelli et al. [23]
for the same parameter ranges.

We next consider the case when Re = 1000, Mρ = 0.1, KB = 0.4, and Fr = 0. For this set of parameters, the flag enters 
large amplitude limit cycle flapping. Table 4 shows the amplitude and frequency of the leading edge transverse displacement 
computed in our work and in reference [23]. Our finest sub-domain for this problem was of size [−0.2, 1.8] × [−1, 1], and 
the total domain size was [−15.20, 16.80] ×[−14.35, 14.35]. The grid spacing on the finest domain was h = 0.0033, and the 
time step was �t = 0.0003. Using h = 0.0025 did not change our reported results. There were a total of 1,800,000 points on 
the flow domain, and it took 106 hours to run the simulation on a single CPU core. Three iterations of (30), (32), and (33)
were required for the first time step, and a maximum of two iterations were required for all remaining time steps.

Fig. 6 shows vorticity contours at four different times during a flapping cycle. The figure shows features consistent 
with what was observed by Gurugubelli et al. [23]. The fluid stresses associated with the leading edge vortex deform the 
flag in the downward direction (leftmost figure). The flag begins to flap back up towards the centerline once the internal 
flag stresses counteract the imposed fluid stresses and flag inertia, and the leading edge vortex detaches (second leftmost 
figure). The inertia of the flag causes it to continue to move towards the centerline while the detached vortex grows in size 
(second rightmost figure). The flag then flaps upward, and a vortex grows at the trailing edge (rightmost figure). After the 
snapshot in the rightmost figure, the detached leading and trailing edge vortices advect downstream and form a vortex pair 
of opposite sign to the one seen in the flag’s near-wake in Fig. 6. The upward motion of the flag creates an attached leading 
edge vortex, which starts an analogous process to the one just described. The result of this upward–downward flag motion 
is limit cycle flapping that repeats indefinitely.

5. Conclusions

We presented an immersed-boundary method for fully coupled flow–structure interaction problems involving thin de-
forming surfaces. The method is strongly-coupled, and is therefore stable for wide ranges of solid-to-fluid mass ratios and 
large body motions. As with many strongly-coupled methods, our method requires the solution of a nonlinear system of 
equations at each time step. This system is solved by iteration, using a linearization of the nonlinearly coupled equations 
and a block-LU factorization of the linearized system to reduce iterations to small-dimensional subsystems of equations. The 
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Fig. 6. Vorticity contours during a flapping cycle for Re = 1000, Mρ = 0.5, KB = 0.4, Fr = 0. Contours are in 15 evenly spaced increments from −5 to 5.

iteration process does not involve heuristic relaxation parameters. We derived the method for general deforming surfaces, 
and verified it for 2D flow past deforming flags. The test problems involved a wide range of mass ratios and large body 
motions, and the method required a small number of iterations to converge for all cases considered. It is straightforward to 
extend the method to fully coupled problems involving rigid bodies.
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Appendix A. An efficient iteration procedure in primitive variables

Using primitive variables for the fluid, the differential–algebraic semi-discrete FSI system is

u̇ +N (u) = −Gp + Lu − E T (χ) f (A.1)

M ζ̇ = −R(χ) + Q (g + W (χ) f ) (A.2)

χ̇ = ζ (A.3)

Du = 0 (A.4)

E(χ)u − ζ = 0 (A.5)

Using the same time discretization schemes as in section 3 and introducing the decomposition χ(k+1)
n+1 = χ

(k)
n+1 + �χ , 

ζ
(k+1)
n+1 = ζ

(k)
n+1 + �ζ , we have the following system to within first order in the increments and �t:⎡

⎢⎢⎢⎢⎢⎢⎣

A G 0 0 E(k) T
n+1

G T 0 0 0 0

0 0 0 K̂ (k) −Q W (k)
n+1

0 0 −I 2
�t I 0

E(k)
n+1 0 −I 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u
pn+1

�ζ

�χ

f (k+1)
n+1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

r̃ f
n

r̃ p
n

rζ (k)

rχ (k)

rc (k)

⎤
⎥⎥⎥⎥⎥⎦ (A.6)

where the right hand side terms are known and analogous to those in section 3. Performing a block-LU decomposition of 
(A.6) gives the sequence of equations

u∗ = A−1r̃ f
n − A−1G(G T A−1G)−1(G T A−1r̃ f

n − r̃ p) (A.7)

p∗ = (G T A−1G)−1(G T A−1r̃ f
n − r̃ p

n ) (A.8)[
B̃(k)

n+1 I

− 2
�t Q W (k)

n+1 K̂ (k)

][
f (k+1)
n+1

�ζ

]
=

[
E(k)

n+1u∗ − rc (k)

2
�t rζ (k) + rχ (k)

]
(A.9)

�χ = 2

�t
(�ζ + rχ (k)) (A.10)

pn+1 = p∗ − (G T AG)−1G T A−1 E(k) T
n+1 fn+1 (A.11)

un+1 = u∗ − A−1(I − G(G T A−1G)−1G T A−1)E(k) T
n+1 fn+1 (A.12)

where B̃(k) = E(k) A−1(I − G(G T A−1G)−1G T A−1)E(k) T .
n+1 n+1 n+1
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As in section 3, all iterations are restricted to (A.9)–(A.10), which have dimensions on the order of the number of body 
points; (A.7)–(A.8) may be computed once and for all at the start of a time step, and (A.11)–(A.12) need only be solved after 
all iterations are completed to convergence.

Again, when (K̂ (k))−1 can be computed and stored, the system (A.9) may be reformulated as the sequence of equations 
given by(

B̃(k)
n+1 + 2

�t
(K̂ (k))−1 Q W (k)

n+1

)
f (k+1)
n+1 = E(k)

n+1u∗ − rc (k) − 2

�t
(K̂ (k))−1rζ (k) + rχ (k) (A.13)

�U = 2

�t
(K̂ (k))−1(rζ (k) + Q W (k)

n+1 f (k)
n+1) − rχ (k) (A.14)

A similar block-LU based immersed boundary method was developed for bodies undergoing prescribed kinematics [12,
26]. The method we propose in (A.7)–(A.12) is different from these in the nonlinear iterations introduced in (A.9)–(A.10). 
Since these iterations are restricted to small dimensional subsystems, we do not believe they will drastically affect the 
effectiveness of the method.
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